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Parallel Bit Interleaved Coded Modulation:
BICM without Asymptotic Assumptions
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Abstract—A new variant of bit interleaved coded modulation block lengthn. Another tool for evaluating the performance
(BICM) is proposed. In the new scheme, callecharallel BICM,  at finite block length is the channel dispersion, which was
L identical binary codes are used in parallel using a mapper, yresented in 1962 [4] and was given more attention only in
a newly proposed finite-length interleaver and a binary ditter . .
signal. As opposed to previous approaches, the scheme doex n recent yeqrs [5]. It would therefore be.'meresulng to am'}’
rely on any assumptions of an ideal, infinite-length interlaver. ~ BICM at finite block length from the information-theoretic

Over a memoryless channel, the new scheme is proven to beviewpoint.
equivalent to a binary memoryless channel, for any blocklegth.  Several attempts have been made to provide error exponent
Therefore the scheme enables one to easily design coded mOduresuIts for BICM. In their work on multilevel codes, Wachs-

lation schemes using a simple binary code that was designedrf . .
that binary channel. The overall performance of the coded mdu- mann et. al. [6] have considered the random coding error

lation scheme is analytically evaluated based on the perfarance €xponent of BICM, by relying on the independent parallel
of the binary code over the binary channel. The new scheme is channels model. However, there were several flaws in the
then analyzed from an information theoretic viewpoint, whee the  derivation: First, the independent parallel channels rhigle
capacity, error exponent and channel dispersion are conséed. jstified by an infinite-length interleaver so therefore ight

The capacity of the scheme is identical to the BICM capacity. b bl tic t it ties f luating finé
The error exponent of the scheme is numerically compared to € Problemalic 1o use 1is properlies for evaluating e

a recently proposed mismatched-decoding exponent analgsof l€ngthperformance of BICM. In the current paper we address
BICM. this point and propose a scheme with a finite-length intedea
for that purpose. Second, there was a technical flaw in the
derivation, which resulted in an inaccurate expressiorttier
|. INTRODUCTION random coding error exponent. We discuss this point in betai
IT interleaved coded modulation (BICM) is a pragmatign Theorem 4. Third, as was noticed in [7], the error exponent
approach for coded modulation [1]. It enables the comesult obtained in [6] sometimes may even exceed that of
struction of nonbinary communication schemes from binaphconstrained coding over the channel (called in [7] thel&zb
codes by using a long bit interleaver that separates thexgodinodulation exponent”). We therefore agree with [7] in the
and the modulation. BICM has drawn much attention igjaim that “the independent parallel channel model fails to
recent years, because of its efficiency for wireless anch@adicapture the statistics of the channel”. However, by prgperl
channels. designing the communication scheme the model can become
The information-theoretic properties of BICM were firstjlid in a rigorous way, as we show in Theorem 1.
studied by Caire et. al. in [2]. BICM was modeled as a binary |n [7] (see also [8]), Martinez et al. have considered the
channel with a random state that is known at the receiver. TRECM decoder as a mismatched decoder, which has access
state determines how the input bit is mapped to the channghly to the log-likelihood values (LLR) of each bit, whereeth
along with the other bits that are assumed to be randop.R calculation assumes that the other bits mapped to the
Under the assumption of anfinite-length, ideal interleaver same symbol are random, independent and equiprobable (as
the BICM scheme is modeled by parallel uses of independenithe classical BICM scheme [2]). By cleverly harnessing th
instances of this binary channel. This model is referred faismatched decoding framework, the authors in [7] presente
as theindependent parallel channel modélsing this model, the generalized error exponent and the generalized mutual
the capacity of the BICM scheme could be calculated. It wasformation, and pinpointed the loss of BICM that incurs
further shown that BICM suffers from a gap from the fulkrom using the mismatched LLRs. While this result is valid
channel capacity, and that when Gray mapping is used thé$ any block size and any interleaver length, achieving thi
gap is generally small. In [2], methods for evaluating therror exponent in practice requires complex code design.
error probability of BICM were proposed, which rely on the=or example, one cannot design a good binary code for a
properties of the specific binary codes that were used (ehary memoryless channel and have any guarantee that the
Hamming weight of error events). BICM scheme will perform well with that code. In fact, the
A basic information-theoretic quantity other than the chagode design for this scheme requires taking into account the
nel capacity is the error exponent [3], which quantifies th&atistical dependencies between the levels, or equitgléme
speed at which the error probability decreases to zero Wéh tysage of essentially nonbinary codes, which is what we wish
o . to avoid when choosing BICM.
The material in this paper was presented in part atl§i€ Annual Allerton . ; .
Conference on Communication, Control, and Computing, hefib, IL, On the theoretical side, another drawback of existing ap-
2010. proaches is the lack of converse results (for either capacit



TO BE SUBMITTED TO THE IEEE JOURNAL ON SELECTED AREAS IN COMMNICATIONS 2

error exponent). The initial discussion of BICM informatio random variable (RV)X will get the valuez, and similarly
theory in [2] assumes the model of independent channd®s x (y|z) denotes the probability will get the valuey given
which is justified by an infinite-length interleaver, so anyhatthe RVX is equal tox. E[-] denotes statistical expectation.
converse result based on this model must assume thatlan meanslog, and rates are given in bit§i(n) = O(e,)
infinite interleaver as well. Therefore the converse resulhall mean thatf(n)| < ce,, for somec > 0 and sufficiently
(upper bound on the achievable rate with BICM) do not holdrge n, and f(n) < O(e,) shall mean thatf(n) < ce,.
for finite-length interleavers. The authors in [7] provide nf,, = g, + O(e,) shall mean thatf,, — g, = O(e,), and
converse results for their model. f(n) > O(eyp) shall mean that-f(n) < O(ey,).

In this paper we propose thparallel BICM (PBICM) Let W denote a memoryless channel with input and output
scheme, which has the following properties. First, the sthe alphabetsY and ) respectively. The transition probabilities
includes an explicitfinite lengthinterleaver. Second, in or- are defined by¥ (y|x) for y € Y andx € X. We assume that
der to attain good performance on any memoryless chanrjéf| = 2”, and consider equiprobable signaling only over the
PBICM allows one to design a binary code for a binarghannellW. An (n, R) codeC C X" is a set of M = 2"F
memoryless channel, and guarantees good performance onctbgewords: € X™. The encoder wishes to convey onedf
nonbinary channel. Third, because the scheme does notmrelyegjuiprobable messages.
the use of an infinite-length interleaver, any finite blocijth
bounds on the performance of channel codes (e.g. [5]), can b
used in order to evaluate the PBICM performance. We shgll
give specific examples, and calculate the error exponent andn BICM, a binary code is used to encode information
the dispersion of the scheme (both achievability and caa/emessagegn,, ma, ...] into binary codewordb,, bs, ...]. The
results) binary codewords are then interleaved using a long integlea

The comparison between PBICM and the mismatched def-), which applies a permutation on the coded bits. The
coding approach [7] should be done with care. With PBICMnterleaved bit streanb is partitioned into groups ofL
when the binary codeword length is the scheme requiresconsecutive bits and inserted into a mapper{0,1}* — X.

n channel uses. In [7], a binary code of lengthrequires The mapper output, denoted is fed into the channel. The
n/L channel uses, whetk is the number of bits per symbol.decoding process of BICM proceeds as follows. The channel
Therefore when the latency is kept equal for both schemesitputy is fed into a bit metric calculator, which calculates
PBICM uses a codeword length thatligimes shorter than the the log-likelihood ratio (LLR) of each input bit given the
codeword used in the mismatched decoder. A fair compariscorresponding output sample(L LLR values for each output
must take this into account. For example, fixing the binasample). These LLR values (or bit metrics) denotedire
codeword lengt for both schemes would result in differentde-interleaved and partitioned into bit metries, zo, ...] that
latency, but equal decoder complexity. If we were to keegrrespond to the binary input codewords. Finally, the tyina
the latency of both schemes fixed, we would get differediecoder decodes the messag@s, mo,...] from [z1, 2o, ...].
decoder complexities. When we numerically compare the erfbhe BICM encoding-decoding process is shown in Figure 1.
exponent of PBICM to the mismatched-decoding exponentThe LLR of the;*" bit in a symbol given the output value
we address this issue. In our comparison the additive whijeis calculated as follows:

Gaussian noise (AWGN) channel and the Rayleigh fading P (410)

channel are considered. When the latency of both schemes is LLR;(y) £ log M’ 1)
equal, the mismatched-decoding is generally better. Hewev Py, (y|1)

when the complexity is equal (or where the codeword Iengwh reP b) is the conditional probability of the channel
of the underlying binary code is equal), the PBICM eXponeButput g‘gﬁm(gltge valug given that ?he;y“‘ b|tyat the mapper

is better in many cases. . ._.input wasb, and the othe(L — 1) bits are equiprobable and
The paper is organized as follows. In Section Il we b”eﬂ?ﬁdependent binary random variables (RVS).

review the classical BICM model and its properties, under th
assumption of an infinite-length, ideal interleaver. In tRec

[l the parallel BICM scheme is presented, and the equivaenC. Classical BICM Analysis: Ideal Interleaving

to a memoryless binary channel is established. In Section IVIn classical BICM (e.g. [2]) the LLR calculation is moti-

parallel BICM is studied from an information-theoreticaw- vated by the assumption of a very lorigdal) interleaverr,

point. Numencgl examples and summary follow in Sections y;l the coded bits go through essentiafigependenchannels.
and VI respectively.

These binary channels are defined as follows:

Definition 1: Let W; be a binary channel with transition
Il. THE BICM COMMUNICATION MODEL probability

A. Notation and Channel Model

Classical BICM Encoding and Decoding

. _ Wi(ylb) = E[W(y|X = pu(Bu, ..., Br))|B; = b]
letters in bold %,y...) denote row vectors, capital letters
(X,Y...) denote random variables, and tilde denotes inter- = 9L-1 Z _W(yW(bl’-'-’bL))' )
leaved signalsi{, z). Px(x) denotes the probability that the by 177

bi=b
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.._| Binar by, bs.. b X y z | oz zee ' 1m1,Ma..
mi,ms2 ) y LD2- ) bI 1 » W ) LLR p L \ Binary

encoder calc. dec.

Fig. 1. BICM encoding and decoding for the chan®&l = and i are the interleaver and mapper, respectively.

equalsL - C(W). Direct calculation gives

D1y
By —» BICM (11/) = W) =L IB; =L-I(B;
5 2 . Lx . sy M) LC(W) L-1(B:Y,S)=L-1(B:Y|S)
Br——»f =
. = L-EsI(B;Y|S = s) = L-EsC(W,) = 3_ C(W,).
s=1

(4)

It is known thatCB'°M (17/) is generally smaller than the full
channel capacityC(W), as opposed to other schemes, most
S random state notably multilevel coding and multistage decoding (MLC-
#_’ S MSD) [6], in which C(W) can be achieved. However, for
many channels, with Gray mapping the gap is small and can
sometimes be tolerated. For example, for 8-PSK signaling
over the AWGN channel with SNR = 5dB; (W) = 1.86bit
where CBICM(11) = 1.84bit. For an elaborate discussion on
. the mapping, as well as examples for channels where Gray
Fig. 3. The binary channdl’ with input B and output(S, Y'). mapping is suboptimal, see [9] and references within.

Fig. 2. The binary channdlV; with input B; and outputY”. The bits
{Bj},;»i are equiprobable and independent RVs.

B——p W Lp Y

IIl. THE PARALLEL BICM SCHEME

The channelV;(y|b;) can be thought of as the original |n this section we propose an explicit BICM-type communi-
channell” where the input isc = 1u(by...br.), where the bits cation scheme which we caparallel BICM (PBICM), which
{bj},., are equiprobable and independent RVs (see Fig. 2}jjows the usage of binary codes on nonbinary channels at

In [2], Caire et al. have proposed the following channéinite blocklength. The main features of the scheme include
model for BICM called theindependent parallel channelthe following: (1) Binary codewords are uséul parallel to
model In this model the channel has a binary ingutA construct a codeword that enters the channel, (2) A new {inite
channel states is selected at random frol§ = {1,...,L} length interleaver, (3) A random binary signal (binary dith
with equal probability (and independently B Given a state that is added to the binary codewords. With the proposed
s, the input bitb is fed into the channelV;. The channel scheme, we rigorously show how the original chanfiél
outputs are the state and the outpuy of the channelV,. relates to the channdl/, thus allowing exact analysis and
The channel, denoted by, is depicted in Figure 3. design of codes at finite block lengths.

The transition probability function ofV is given by

A. Interleaver Design

o . . l We wish to design a finite length interleaver that will be
Wy, slb) = P55y, slb) = LWS(y’b)' 3 as short as possible, that will be as simple as possible, and
that will cause the binary codewords to go through a binary
Note that both outputs can be combined into a single outpatemoryless channel. In order to achieve the last goal, each
the LLR, which is a sufficient statistic for optimal decodindbinary codeword must be spread overchannel uses oV,
over any binary-input channel. The LLR calculation for theo the interleaver output length cannot be less thahannel
channel W is given by LLR(y, s) £ LLR,(y), where uses. The newly proposed interleaver has of output length of
LLR4(-) is given in (1). Therefore the independent parall@xactlyn, which satisfies the above requirements.
channel model transforms the original nonbinary char#iel Let ENC and DEC be an encoder-decoder pair for a
into a set ofL independent parallel copies of the chaniiél binary code. Leby, ..., by be L consecutive codewords from
Using a binary code that was designed for the simple binaifye output of ENC', bunched together to form a matrB:

channellV, reliable communication for the original channel b, bii ... bin
W can be attained. B— . _ . . (5)
Let C(-) denote the Shannon capacity of a channel (with I Y R B
bL bL1 .. bLn

equiprobable input). According to [2], the BICM capacity
(assuming an infinite-length ideal interleaver) is giventhg Let s be a vector of i.i.d. random states drawn frdifi =
capacity of L independent copies of the chanriél, which {1..L}". s shall be the interleaving signal. Each columrBn
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shall be shifted cyclically by the corresponding elementso d,

S
the interleaved signdB is defined as by b} *
m :
b b : : : B
} (14s1)r1 (I14sp)Ln . . b d; B’ T —p b X
B=| 0 by L ® Lopy Py
b(Lts1)1 e ba+s,)en

Fig. 6. PBICM encoding scheme+' denotes
where(¢)r, = (¢ modulo L)+ 1. Each column vector of inter- modulo-2 addition (XOR).

leaved signaB is mapped to a single channel symhgql =

01
B(O(14s.) ks - - 5 D(Ltsp) k) @Nd we callx = [z1, ..., z,] the Sy 7, X
channel codeword R |5 B L) : T
_ Atthe decoder an LLR value is calculated for everythin Y ¥ —» 7 S o1, -Z : :
B from y. The LLR values are denoted I#; We assume that ' —k mr,

s is known at the decoder (utilizing common randomness),
. . . . . . H H A ‘ ,
therefore the de-interleaving operation is simply sorfiagk Fig- 7- PBICM decoding schemé, =1 —2-d,, *x’ denotes
= . . element-wise multiplication.
the columns ofZ according tos by reversing the modulo
operation. The de-interleaver output is a vector of LLR ealu

z for each transmitted codeword, according to (1). Each a memoryless equiprobable binary source. The output of each

codeword is decoded independently By=C. encoderENC;, b;, goes through a component-wise XOR
operation with the dither vectad;. The output of the XOR
B. Binary Dither operation, denoted/, is fed into the interleaver. The full

Since the decoder decodes each binary codeword inffd&!CM encoding scheme is shown in Fig. 6. _
pendently, the communication scheme employing the above/Ve let each decodeb EC; know the value of the dither
interleaver can be viewed as as set of parallel encodéf€d by its corresponding encodeVC, d, (in practice the
decoder pairs, which we denote BYNC, ..., ENC, and dither signals are generated using a pseudo-random genjerat
DEC,, ..., DEC}, (see Figures 4 and 5). Note that we canndf order to compensate for.the ditheri at the decodgr, the LLR
assume any independence between the effective chanyaélges are modified by flipping their sign for each dither ealu
between each encoder-decoder pair. of 1 (and maintaining the sign where the dither is 0). Foryall

Consider the first encoder-decoder p&ifyC; and DEC,. denote the LLR values at the de-interleaver outputzpy=
Since the input of DEC; depends on the codewords trans?ii - #,]- The LLR values at the decoders input shall be
mitted by ENC,,... . ENCy, the channel betweeBNC; and denoted byz; = [z ... zin] and given byz; = z;,(1 -
DEC, is not strictly memoryless. If, somehow, the decoder$/j); Jj = 1,....,n. The PBICM decoding scheme is shown
DEC,,...DEC, were forced to send i.i.d. equiprobable biln Fig. 7.
nary codewords, then channel betweBiNC; and DEC,
would be exactly the channél’ (which is a binary mem- C. Model Equivalence

oryless channel) with the accurate LLR calculation (1). Before we analyze the channel between each encoder-
In order to achieve the goal of. binary memoryless decoder pair in PBICM, let us define a binary memoryless
channels between each encoder-decoder pair simultayeoysiannel that is related to/, which will prove useful in the
we add a binary dither — an i.i.d. equiprobable binary Signﬁhalysis of PBICM.
- to each encoder-decoder pair as follows. Let the ditherpegfinition 2: Let 7 be a memoryless binary channel with
signalsd; = [di,...,dw], I € {1,..,L} be L random jnput B and output(Y, S, D): S is drawn at random from
vectors, each of length, that are drawn independently from{l’ ..,L}, D is drawn at random fron{0,1} (S and D are
independent, and both do not depend on the inputY is
the output of the channdls with input B & D (@ is the

b, > ¥ XOR operation). Note that the chanriél is the channelV/
mi - where the input is XORed with a binary R (see Fig. 8)
: : : ™ i} Lo x and that the LLR calculation for the channi@l is given by
b, LLRW(ya S, d) = (_1)dLLR17V/(y7 S) = (_1)dLLRS(y)
mL Theorem 1:In parallel BICM, the channel between every

encoder-decoder pair is exactly the binary memorylessraan

Fig. 4. Interleaving scheme viewed as parallel encoders —__T0m
W, with its exact LLR output.

S . .
vy oz N Proof: Consider the pairENC; and DEC;. Let by
LLR 7 ] mi be the codeword sent frold NC,. After adding the dither
Yy P calc —» 7 : : : d;, the dithered codeword) enters the interleaver. The

2L mr, other codewordbs,, ..., by, are dithered usinds, ..., d .. Since

the dither of these codewords is unknown REEC;, the
Fig. 5. De-interleaving scheme viewed as parallel decoders dithered codewordby, ..., b’ are truly random i.i.d. signals.
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The interleaving signas interleaves the dithered codewords  Proof: First note that

according to (5). The interleaved signal enters the mapper i

and the channdl, resulting in an outpug. Since the dithered min{pe,, - pe, } < Pe <Y e (8)
codeworddy’, ..., b are i.i.d., the equivalent channel frdm ) _ L )

to (y,s) is exactly the channéV. The LLR calculation at the yvhere 'Fhe left inequality follpws by deflnltlon_and the right
PBICM receiver along with the interleaver produce, which inequality follows from the union bound. Following Theor&_m
is exactly the LLR calculation that fits the channél. we havepe, = pe, = ... = pe, = pe(W) and the proof is

Recalling that the chann&V is nothing but the channél’ concluded. -

L . . Note that due to similar arguments, the average bit error
with its input XORed with a binary RV, and that the LLR of the . . ,
channell’ can be easily modified by the dither to produce thrate (BER) with PBICM will be equal to the BER attained by

LLR of the channelW, we conclude that the channel betweeF%e codeC over the Cha”r?eW- . .
In many cases the bit error rate (BER) is of interest.

b; to z; is exactly the channdél/ with LLR calculation. pose that each of the messages, .., my) represents

u
Since by symmetry the above holds for any encoder—decocie . : . .
pair ENCi-DEC), the proof is concluded. = (ﬁformatmn bits and the entire messagerepresentd. - k

information bits. Let},, denote the error in the’-th bit of the

An important note should be made: Parallel BICM allowg ¢ mation messagen,. The average BER for the encoder-
the decomposition of the nonbinary chanf&l to L binary decoder paitENC;-DEC, is defined by

channels of the typ®’. TheseL channels areotindependent.

For example, ifi¥ is an additive noise channel, and at some 1 n’
point the noise instance is very strong, this will affectthi pgl £ - Z Pr{&).}. 9
decoders and they will fail in decoding together. However, v}

since in the PBICM scheme the channels are used indepsimilarly, define the overall average BER as
dently, the operation of each decoder is not changed. The L
outputs of these decoders will inevitably be dependentyand ba 1

take this into consideration when analyzing the perforreanc Pe = T Z
of coding using PBICM in the following.

n’ L
1
Pr{€p} =D p, (10
=1 k'—1 =1
Corollary 2: Let p®(W) be the average BER of a binary
codeC over the channel’. Then the average BER of the
D. Error Probability Analysis codeC used with PBICM is equal tp?(W).

) Proof: Follows directly from Theorem 1 and from the
We wish to analyze the performance of PBICM, andqfinition of the average BER in (10). -

specifically, we are interested in the overall codeword rerro
probability. LetC be a binary(n, R) code, used in the PBICM
scheme. To assure a fair comparison, we regard dach
consecutive information messagés,...,mz) as a single
messagen, and regard the scheme as a code of lengtin
the channel input alphabet. We define the following error
events: Let&; be the event of a codeword error REC],
and let€ be the event of an error iany of the messages
{m1,...,m}, i.e. € =], &. Denote the corresponding erro
probabilities byp., andp,. respectively.

Corollary 1: Let p. (W) be the codeword error probability
of a binary code® over the channel’. Then the overall error
probability p. of the codeC when used with PBICM can be
bounded by

IV. PARALLEL BICM: INFORMATION THEORETICAL
ANALYSIS

In the previous section we defined the PBICM scheme and
analyzed its basic error probability properties. The egjence
of the channel between each encoder-decoder pair that was
established in Theorem 1 enables a full information-thiézak
tanalysis of the scheme. We show that the highest achievable
rate by PBICM (the PBICM capacity) is equal to the BICM
capacity as in Equation (4), which should not be a surprise. A
the finite-length regime, we derive error exponent and chan-
nel dispersion results as information-theoretical messtior
optimal PBICM performance at finite blocklength. Note that
o o the definition of error exponent and dispersion are meaasgy|
pe(W) <pe < L-pe(W). (7)  when the BICM scheme relies on an infinitely long interleaver

A. Capacity
W s » D Let the PBICM capacity ofV, CPBIM(1¥/), be the highest
D €{0,1} g achievable rate for reliable communication over the chihnne
W with PBICM and a given mapping.
Theorem 2:The PBICM capacity is given by

)
v

L
CPBICM(W) - I. C(W) _ Z C(Ws) _ CBICM (W) (11)

Fig. 8. The binary channélV. The random states and the ditherD are Proof: First by Theorem 1. the performance of a binary
known at the receiver. " ' . ! .
code with PBICM and its performance on the binary channel
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are tightly coupled as in Equation (7). It therefore followsakingn — oo the factor of L vanishes and we get that for
that the PBICM capacity is equal tb times the capacity of any series of codes,
the channeC(W). . Straightforward calculation of the capacity 1 1
givesC(W) = C(W) = L °F  c(w,), as required. = lim —=logp{™ = lim —=logp((W).  (15)

A note regarding the capacity proof: one might me tempted noee noee
to try and prove the capacity theorem for PBICM withouBince the rate for PBICM id. times the rate for coding on
dither, since with random coding, the codeis merely an W, the proof is concluded. [ ]
i.i.d. binary random vector. This approach fails becausthef = The channelV has a special structure, and is related to the
following. In the decoding of each codeword, the correcnebinary sub-channel’;. We now calculate two basic bounds
of the modelV relies on the fact that thether codewords for the error exponent ofi” in terms of the sub-channel¥;.
are i.i.d. signals. Since PBICM requires a single code f@y Theorem 3, the PBICM error exponent of the chariiiél
all the L levels, such a condition can never be met. It isan be bounded accordingly.
possible to prove the achievability without dither whenngsi  Theorem 4.Let E(R) be the error exponent of the channel
a different random code at each level, but such an approdeh It can be bounded as follows:
will not guarantee the existence of a single code, as regdjuire Random coding:
by PBICM.

B(R) > E,(R) = max {Bo(p) ~ pR},  (16)

B. Error Exponent '

The error exponent of a channiél is defined byE(R) = where ©
lim,, 00 — 2 log (pe(n)), wherep.(n) is the average codeword Eo(p) = —logE {27E° (p)} ; (17)
error probability for the best code of length. A lower o

bound on E(R) for memoryless channels is thendom E;’(p) is the E, function for the channel,, and the

coding error exponent [3], which is given b¥E,(R) = expectation is w.r.tS which is drawn uniformly from{1..L}.
max,e[o,1] maxpy () { Eo(p, Px) — pR}, where Sphere packing:
1+p
Eo(p)2 — log Z <Z Py (x)W(mx)l/(ler)) . E(R) <Eqp(R) = I?géi{Eo(P) — pR}, (18)
YyeY \z€EX

(12) whereEq(p) is given in (17).
Since we consider equiprobable inputs only we omit the Proof: The bounds in the theorem are the original random
dependence dE(p) in Px, and omit the maximization w.r.t. coding and sphere packing exponents [3]. The proof, thezefo
Px in the definition ofE,(-). Others known bounds on theboils down to the calculation oE, of W. By writing the
error exponent include thexpurgationerror exponent lower definition of E, for the channellW, and noting that the
bound, thesphere packingerror exponent (an upper bound)ransition probabilities are given by
and others [3]. We now extend the error exponent definition

to the PBICM scheme: W(y,s,d|b) = %W(y, sb@dd) = iWS(gAbEB d), (19)
Definition 3: For a given channdll’ and a mapping., let
EPBIM(R) be defined ds E, simplifies to the desired form of (17). [
1 Several notes can be made. Since the random coding and
EPPIM(R) £ 1im ——log (p(n)), (13) sphere packing exponents coincide at rates above theatritic

n—oo n

rate of W (denotedR' ), the exact PBICM exponent is known
for rates above thEBICM critical rate RP'M 2 . W For
lower rates we may use any of the other bounds on the error
r%B(ponent oW (although they may not be able to be presented
as compactly as in (17)). .

The functionE, of the channellW is equal to the error
exponent of the channéV. In [6], the authors offered the
model of W for calculating the error exponent of BICM. It is
whereE(-) is the error exponent of the binary chanmgl claimed thatE, of the channelV is given by [6, Eq. (37)]:

Proof: It follows from (7) that

wherep.(n) is the average codeword error probability for th
best PBICM scheme with block length of
Using Corollary 1, we can calculate the PBICM expone
using the error exponent o¥:
Theorem 3:The PBICM error exponent of a chanriél is
given by
E"PCN(R) = B(R/L), (14)

L
1 — 1 1 — © ] = 1 ©)
- log(L - p{™ (W) < - logp(™ < - log p™ (W), E [Eo (P)} =1 Zl Eq’ (p)- (20)

wherepgn) is the PBICM error probability anﬂi") (W) is the By Theorem 4, this is not the exact expression. In fact, ittgan
error probability of the same (n,R) binary code ov€r By shown using the Jensen inequality thaf(p) < E E(@(p)},

Lin general, when defining error exponents, the definitiorld baly when and therefore the. resuﬂiﬂgT(R) expression overestimates the
the limit exist. true random coding ofV.
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C. Channel Dispersion As a result, the PBICM dispersion is given by
An alternative information theoretical measure for quignti VPEIM() = LQV(W)- N
ing coding performance with finite block lengths is ttennel Proof: The achievability bound (23) follows from [5,

dispersion Suppose that a fixed codeword error probabilityheorem 45] and from Corollary 1. The factor bfL in the
p. and a codeword length are given. We can then seekinverse@ function comes from the unavoidable use of the
the maximal achievable rat& given p, and n. It appears union bound in (7). The converse (24) follows from [S, Theo-
that for fixed p. and n, the gap to the channel capacity ige@m 49] and Corollary 1. The PBICM dispersion follows from
approximately proportional t@)—!(p.)//n (Where Q(:) is (23) and (24), and from the fact thim, _, o+ len(i) =1l m
the complementary Gaussian cumulative distribution fiomgt As in the error exponent case, the PBICM dispersion of
The proportion constant (squared) is called the channpédis a channel is related to the dispersion of the binary channel
sion. Formally, define the (operational) channel dispersis . We now calculate it explicitly from the dispersions of the
follows [5]: binary sub-channel&;.

Definition 4: The dispersioriV(W) of a channell’ with Theorem 6:The dispersion of the chann@rl is given by
capacityC is defined as

) V(W) = V() =E[V(Ws)| + VAR [C(Ws)] =
V(W) = lim limsup n- (C’—Ri(n,pe)) (21) 1
Pe=0 noo Q7 (pe) ’ = |72 V(W) | +VAR(C(Ws)),  (25)
where R(n, p.) is the highest achievable rate for codeword s=1
error probabilityp. and codeword length. whereVAR(C(Wp)) is the statistical variance of the capacity

In 1962 , Strassen [4] used the Gaussian approximationdbi;, i.e.

derive the following result for DMCs: VAR(C(Ws)) 2 E[C?(Ws)] — E2[C(Ws)].  (26)
R(n,pe) = C = /V/nQ ' (pe) + O ( > (22 Proof: Recall that

where C' is the channel capacity, and the new quantity = 1= 1
is the (information-theoretic) dispersion , which is given Wiy, s, db) = §W(y’ sped) = EWS(W)@ 4. @D

V £ VAR(i(X;Y)), wherei(z; y) is the information density, The dispersion of all memoryless channels is given by the
given by i(z;y) = log lf;f;)i%, and the distribution of variance of the information density. Fd8 being the input

X is the capacity-achieving distribution that minimiz&€S to the channel¥ we it can be shown that the information
Strassen’s result proves that the dispersion of DMCs isleqd@nsities are related as follows:

to VAR(i(X;Y)). This result was recently tightened (and

extended to the power-constrained AWGN channel) in [5]. iBy.s(b;y,5) = iy s(biyls). (28)

It is also known that the channel dispersion and the ergparefore we have

exponent are related as follows. For a channel with capacity

C and dispersior?/, the error exponent can be approximated V(W) = VAR(ip,y,s(B;Ys)|S = s)

by E(R) = (C_R) "geq [5] for details on the early origins of -E [iQB:Y\s(& Yls)|S = S} —C(W,)?,

logn

2V in2
this approximation by Shannon. We now extend the dispersion

definition for PBICM. N
Definition 5: The PBICM dispersionVPBCM(11) of a V(W) =VAR(ig,y|s(B; Y|S))
channelW and PBICM capacityC*B'“M (1) is defined as a .
pacityC™= M () YR [VARip.ys(B;Y|s)|S = s]]

PBICM _ 2 .
VPBICM(W) _ hrn limsup n- (C ézv[_/i( f(nvpe)) , “+ VAR [E[’LB;y‘S(B; Y|S)|S = S]]
Pe =E[V(Ws)] + VAR [C(W)]
where R(n, p.) is the highest achievable rate for any PBICM | L
scheme with a givem andp.. S ZV(WS)
Relying on the relationship between the PBICM scheme and L~
th?”?ég?;%cgétgte%’ tv)\;e gagi\fgr?\,\é)ltcr)];f?g?\gtlﬂg;n d lei (a) follows from the law of total variance. The dispersion of

. -~ : . is calculated similarly, resulting in (26). ]
be a given codeword error probability. Define the h|ghe§/ . . . .
achievable rate attained using PBICM BJ®M (1. p.), and ote that since large dispersion means higher backoff fiem t

. 2 PBICH ~ capacity (see (22)), the terWiAR(C(Ws)) can be thought
tg,?m%ﬁ'(ont; ;hﬁ_hF;?CM capacity bAR = C (W) of as apenalty factorfor the dispersion, over the expected

dispersion over the channeld’;, E[V(Wg)]. This factor
LQV(W) Pe 1 grows as the capacities of the sub-channiéls are more
AR TQ_I (f) +0 (ﬁ) ,  (23) spread. Itis interesting to note that the téiEfiV (Ws)] appears
in the context of multilevel codes and parallel independent
logn decoding, a scheme which is related to parallel BICM (see
> (24) 110, ch. 5)).

Pe—0 poo

+ VAR(C(Ws)).  (29)

AR > @Ql(peHO(

n

n
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V. NUMERICAL RESULTS

In this section we evaluate numerically the PBICM randol N 5 Capaciy
coding error exponent (see Theorems 3 and 4) in order 1N x Capacity (BICM) |
o . : ER)
compare it with the mismatched decoding exponent [7]. V . E:(R) [PBICM]
consider the AWGN and the Rayleigh fading channels. 08\ ~ — —E(R) [PBICM, normalized] |
\\ \ — — E,(R) [Mismatched decoding]
A. Normalization: Latency vs. Complexity 06k > i

When the latency of both schemes is fixeditohannel uses,
the the PBICM error exponent is generally inferior to that ¢
the mismatched decoding. This can also be seen by obsen
that the PBICM random coding exponent has a slope bfL

0.4

(in its straight-line region), where the mismatched dergdi 0.2y il
exponent has a slope efl. However, it should be taken into
consideration that when the block lengtmisthe mismatched 0

decoder is working with a binary code of length L. The
complexity of the maximum-metric decoder is proportioral t
the number of codeword®™ " # [7], where R is the rate of Fig. 9. Random coding exponents over the Rayleigh fadingitiawith
the binary code. On the other hand, the number of codewon®#sQAM signaling and SNR of 5dB

in the PBICM scheme id. - 2% only. In order to assure a

fair comparisorfrom the complexity point of viewhe PBICM

scheme shall use a block length thaLitimes the block length 55

of the mismatched decoding scheme. Comparing the er | , ¢ Capacity |
. : PBICM Mismatched ° X Capacity (BICM)
probabilities of both schemes gived.E; =nE) . ER)
. . 4.5k r
We therefore define the normalized PBICM error exponent R E(R) [PBICM]
L times the PBICM error exponent (the concept of normalize o NN — = ~E{R) [PBICM, normalized] - 7
error exponent was introduced by Arikan [11, Sec. VII] it 35> pRe — — E{R) Mismatched decoding]

the context of multilevel codes). We conclude that whe -
the complexity is more important (and the latency is les &
important), the normalized PBICM exponent is the quanti

of interest.

It could be claimed, of course, that practical codes us: 151 ]
today (such as low-density parity check (LDPC) codes) wi 1t 1
be used and they do not have exponential decoding complex 05l i
On the other hand, such codes do not guarantee an expor o
tially decaying error probability. 0

RIbits]

B. Comparison with the Mismatched Decoding Exponent Fig. 10. Random coding exponents over the Rayleigh fadiranioél with

In the following we show the comparison between th&#QAM signaling and SNR of 20dB.
PBICM error exponent and the mismatched decoding error
exponent [7]. We show the (unconstrained) random codin . .
error exponent of the channel, along with the mismatcheat erPf 7 channel uses. The mismatched decoder never attains
exponent and the PBICM random coding error exponent (bdﬂgher values than the unconstrained exponent, a fact that
normalized and un-normalized). is known as the data processing inequality for exponents [7,
Figure 9 compares the exponents of 16QAM signaling ovBroposition 3.2]. Fig. 10 shows a similar picture for theecas
the Rayleigh fading channel at SNR = 5dB. Throughout tf 16QAM and SNR of 20dB (this behavior was observed over
entire range of rates between zero and the BICM capaci@,e Rayleigh fading channel for all practical ranges of SNR
the normalized PBICM random coding exponent is highénd 8PSK, 16QAM and 64QAM signaling). For the AWGN
(better) than the mismatched decoding exponent. Both BICR##annel it cannot be claimed that the normalized PBICM
exponents are zero for rates above the BICM capacity, and figoonent outperforms the mismatched exponent, and the othe
unconstrained random coding exponent reaches zero atlthe gy around is also not generally true. Examples for bothsase
channel capacity, as expected. A fact that might be somewR&¢ shown in Figures 11(a) and 11(b).
surprising at first glance is that the normalized PBICM expo-
nent is better than the unconstrained random coding exponen VI. SUMMARY AND DISCUSSION
for some rates. While this may seem contradictory, recall th In this paper we have presentgadrallel bit-interleaved
the normalized PBICM scheme essentially taked. channel coded modulatiofPBICM). The scheme is based on a finite-
uses so it cannot be considered a scheme that uses a bleokth interleaver and on adding binary dither to the binary
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0.7

{  Capacity
x  Capacity (BICM)
0.6F —E® i
E,(R) [PBICM]
05F« - — —E(R) [PBICM, normalized] |
N \\ N - — - E/(R) [Mismatched decoding]
04f- " 1
B N
z S
=3 NN
u NEN
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15 T
{  Capacity
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~ —E®
A
AN E(R) [PBICM]
N R — — —E(R) [PBICM, normalized]
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R[bits]
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Fig. 11. Random coding exponents over the AWGN channel waQAM

signaling for SNR values of 0dB and 5dB.

approach. When the two schemes have the same latency
(same block length) the PBICM exponent is inferior to that
of the mismatched decoding approach. However, when the
complexity of the scheme is considered (or equivalentlygmvh
codeword length of the underlying code is the same), PBICM
becomes comparable, and generally better over the Rayleigh
fading channel.

An important merit of the PBICM scheme is that it allows an
easy code design. In PBICM, one has to design a binary code
for a memoryless binary channel. When designing efficient
binary codes such as LDPC [12], a desired property of a
channel is that its output will be symmetric. It appears tiat
matter what channdl’ we have at hand, the resulting binary
channellW is always output-symmetric (when the output is
the LLR).

The PBICM scheme is composed of, among other things,
binary dither. Dither is used in some cases as a theoretical
tool for achievability proofs. In PBICM, it is an essentiarp
of the scheme itself, and even the random coding capacity
proof becomes impossible without it. The main role of the
dither is to validate the equivalence of the PBICM scheme to
a binary memoryless channel. In addition, the binary ditker
the element that symmetrizes the binary channel, which make
the code design easier. This symmetrization property wss al
noticed by [13] where a similar dither is used with BICM (and
termed 'channel adapters’). The code design proposed in [13
rely on the assumption of an ideal interleaver.

Because of its simplicity and easy code design, we conclude
that PBICM is an attractive practical communication scheme
which also allows exact theoretical analysis.
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