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Abstract—A new variant of bit interleaved coded modulation
(BICM) is proposed. In the new scheme, calledparallel BICM,
L identical binary codes are used in parallel using a mapper,
a newly proposed finite-length interleaver and a binary dither
signal. As opposed to previous approaches, the scheme does not
rely on any assumptions of an ideal, infinite-length interleaver.

Over a memoryless channel, the new scheme is proven to be
equivalent to a binary memoryless channel, for any blocklegth.
Therefore the scheme enables one to easily design coded modu-
lation schemes using a simple binary code that was designed for
that binary channel. The overall performance of the coded modu-
lation scheme is analytically evaluated based on the performance
of the binary code over the binary channel. The new scheme is
then analyzed from an information theoretic viewpoint, where the
capacity, error exponent and channel dispersion are considered.
The capacity of the scheme is identical to the BICM capacity.
The error exponent of the scheme is numerically compared to
a recently proposed mismatched-decoding exponent analysis of
BICM.

I. I NTRODUCTION

B IT interleaved coded modulation (BICM) is a pragmatic
approach for coded modulation [1]. It enables the con-

struction of nonbinary communication schemes from binary
codes by using a long bit interleaver that separates the coding
and the modulation. BICM has drawn much attention in
recent years, because of its efficiency for wireless and fading
channels.

The information-theoretic properties of BICM were first
studied by Caire et. al. in [2]. BICM was modeled as a binary
channel with a random state that is known at the receiver. The
state determines how the input bit is mapped to the channel,
along with the other bits that are assumed to be random.
Under the assumption of aninfinite-length, ideal interleaver,
the BICM scheme is modeled by parallel uses of independent
instances of this binary channel. This model is referred to
as theindependent parallel channel model. Using this model,
the capacity of the BICM scheme could be calculated. It was
further shown that BICM suffers from a gap from the full
channel capacity, and that when Gray mapping is used this
gap is generally small. In [2], methods for evaluating the
error probability of BICM were proposed, which rely on the
properties of the specific binary codes that were used (e.g.
Hamming weight of error events).

A basic information-theoretic quantity other than the chan-
nel capacity is the error exponent [3], which quantifies the
speed at which the error probability decreases to zero with the
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block lengthn. Another tool for evaluating the performance
at finite block length is the channel dispersion, which was
presented in 1962 [4] and was given more attention only in
recent years [5]. It would therefore be interesting to analyze
BICM at finite block length from the information-theoretic
viewpoint.

Several attempts have been made to provide error exponent
results for BICM. In their work on multilevel codes, Wachs-
mann et. al. [6] have considered the random coding error
exponent of BICM, by relying on the independent parallel
channels model. However, there were several flaws in the
derivation: First, the independent parallel channels model is
justified by an infinite-length interleaver so therefore it might
be problematic to use its properties for evaluating thefinite
lengthperformance of BICM. In the current paper we address
this point and propose a scheme with a finite-length interleaver
for that purpose. Second, there was a technical flaw in the
derivation, which resulted in an inaccurate expression forthe
random coding error exponent. We discuss this point in detail
in Theorem 4. Third, as was noticed in [7], the error exponent
result obtained in [6] sometimes may even exceed that of
unconstrained coding over the channel (called in [7] the “coded
modulation exponent”). We therefore agree with [7] in the
claim that “the independent parallel channel model fails to
capture the statistics of the channel”. However, by properly
designing the communication scheme the model can become
valid in a rigorous way, as we show in Theorem 1.

In [7] (see also [8]), Martinez et al. have considered the
BICM decoder as a mismatched decoder, which has access
only to the log-likelihood values (LLR) of each bit, where the
LLR calculation assumes that the other bits mapped to the
same symbol are random, independent and equiprobable (as
in the classical BICM scheme [2]). By cleverly harnessing the
mismatched decoding framework, the authors in [7] presented
the generalized error exponent and the generalized mutual
information, and pinpointed the loss of BICM that incurs
from using the mismatched LLRs. While this result is valid
for any block size and any interleaver length, achieving this
error exponent in practice requires complex code design.
For example, one cannot design a good binary code for a
binary memoryless channel and have any guarantee that the
BICM scheme will perform well with that code. In fact, the
code design for this scheme requires taking into account the
statistical dependencies between the levels, or equivalently, the
usage of essentially nonbinary codes, which is what we wish
to avoid when choosing BICM.

On the theoretical side, another drawback of existing ap-
proaches is the lack of converse results (for either capacity or
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error exponent). The initial discussion of BICM information
theory in [2] assumes the model of independent channels
which is justified by an infinite-length interleaver, so any
converse result based on this model must assume that an
infinite interleaver as well. Therefore the converse results
(upper bound on the achievable rate with BICM) do not hold
for finite-length interleavers. The authors in [7] provide no
converse results for their model.

In this paper we propose theparallel BICM (PBICM)
scheme, which has the following properties. First, the scheme
includes an explicit,finite length interleaver. Second, in or-
der to attain good performance on any memoryless channel,
PBICM allows one to design a binary code for a binary
memoryless channel, and guarantees good performance on the
nonbinary channel. Third, because the scheme does not rely on
the use of an infinite-length interleaver, any finite blocklength
bounds on the performance of channel codes (e.g. [5]), can be
used in order to evaluate the PBICM performance. We shall
give specific examples, and calculate the error exponent and
the dispersion of the scheme (both achievability and converse
results)

The comparison between PBICM and the mismatched de-
coding approach [7] should be done with care. With PBICM,
when the binary codeword length isn the scheme requires
n channel uses. In [7], a binary code of lengthn requires
n/L channel uses, whereL is the number of bits per symbol.
Therefore when the latency is kept equal for both schemes,
PBICM uses a codeword length that isL times shorter than the
codeword used in the mismatched decoder. A fair comparison
must take this into account. For example, fixing the binary
codeword lengthn for both schemes would result in different
latency, but equal decoder complexity. If we were to keep
the latency of both schemes fixed, we would get different
decoder complexities. When we numerically compare the error
exponent of PBICM to the mismatched-decoding exponent
we address this issue. In our comparison the additive white
Gaussian noise (AWGN) channel and the Rayleigh fading
channel are considered. When the latency of both schemes is
equal, the mismatched-decoding is generally better. However,
when the complexity is equal (or where the codeword length
of the underlying binary code is equal), the PBICM exponent
is better in many cases.

The paper is organized as follows. In Section II we briefly
review the classical BICM model and its properties, under the
assumption of an infinite-length, ideal interleaver. In Section
III the parallel BICM scheme is presented, and the equivalence
to a memoryless binary channel is established. In Section IV
parallel BICM is studied from an information-theoretical view-
point. Numerical examples and summary follow in Sections V
and VI respectively.

II. T HE BICM COMMUNICATION MODEL

A. Notation and Channel Model

letters in bold (x,y...) denote row vectors, capital letters
(X,Y ...) denote random variables, and tilde denotes inter-
leaved signals (̃b, z̃). PX(x) denotes the probability that the

random variable (RV)X will get the valuex, and similarly
PY |X(y|x) denotes the probabilityY will get the valuey given
that the RVX is equal tox. E[·] denotes statistical expectation.
log meanslog2 and rates are given in bits.f(n) = O(εn)
shall mean that|f(n)| ≤ cεn for somec > 0 and sufficiently
large n, and f(n) ≤ O(εn) shall mean thatf(n) ≤ cεn.
fn = gn + O(εn) shall mean thatfn − gn = O(εn), and
f(n) ≥ O(εn) shall mean that−f(n) ≤ O(εn).

Let W denote a memoryless channel with input and output
alphabetsX and Y respectively. The transition probabilities
are defined byW (y|x) for y ∈ Y andx ∈ X . We assume that
|X | = 2L, and consider equiprobable signaling only over the
channelW . An (n,R) codeC ⊆ Xn is a set ofM = 2nR

codewordsc ∈ Xn. The encoder wishes to convey one ofM
equiprobable messages.

B. Classical BICM Encoding and Decoding

In BICM, a binary code is used to encode information
messages[m1,m2, ...] into binary codewords[b1,b2, ...]. The
binary codewords are then interleaved using a long interleaver
π(·), which applies a permutation on the coded bits. The
interleaved bit stream̃b is partitioned into groups ofL
consecutive bits and inserted into a mapperµ : {0, 1}L → X .
The mapper output, denotedx, is fed into the channel. The
decoding process of BICM proceeds as follows. The channel
outputy is fed into a bit metric calculator, which calculates
the log-likelihood ratio (LLR) of each input bitb given the
corresponding output sampley (L LLR values for each output
sample). These LLR values (or bit metrics) denotedz̃ are
de-interleaved and partitioned into bit metrics[z1, z2, ...] that
correspond to the binary input codewords. Finally, the binary
decoder decodes the messages[m̂1, m̂2, ...] from [z1, z2, ...].
The BICM encoding-decoding process is shown in Figure 1.

The LLR of thejth bit in a symbol given the output value
y is calculated as follows:

LLRj(y) , log
PY |Bj

(y|0)
PY |Bj

(y|1) , (1)

wherePY |Bj
(y|b) is the conditional probability of the channel

output getting the valuey given that thejth bit at the mapper
input wasb, and the other(L − 1) bits are equiprobable and
independent binary random variables (RVs).

C. Classical BICM Analysis: Ideal Interleaving

In classical BICM (e.g. [2]) the LLR calculation is moti-
vated by the assumption of a very long (ideal) interleaverπ,
so the coded bits go through essentiallyindependentchannels.
These binary channels are defined as follows:

Definition 1: Let Wi be a binary channel with transition
probability

Wi(y|b) , E [W (y|X = µ(B1, ..., BL))|Bi = b]

=
1

2L−1

∑

bj ; i6=j
bi=b

W (y|µ(b1, ..., bL)). (2)
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m1,m2.. Binary
encoder

b1,b2.. π µb̃ m̂1,m̂2..Binary
dec.
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z1, z2..
π−1W

x y z̃

Fig. 1. BICM encoding and decoding for the channelW . π andµ are the interleaver and mapper, respectively.

µ

B1
B2

Bi

BL

X YW
:
:

Fig. 2. The binary channelWi with input Bi and outputY . The bits
{Bj}j 6=i are equiprobable and independent RVs.

B

S: random state
S

YWs

Fig. 3. The binary channel̃W with input B and output(S, Y ).

The channelWi(y|bi) can be thought of as the original
channelW where the input isx = µ(b1...bL), where the bits
{bj}j 6=i are equiprobable and independent RVs (see Fig. 2).

In [2], Caire et al. have proposed the following channel
model for BICM called theindependent parallel channel
model. In this model the channel has a binary inputb. A
channel states is selected at random fromS , {1, ..., L}
with equal probability (and independently ofb). Given a state
s, the input bit b is fed into the channelWs. The channel
outputs are the states and the outputy of the channelWs.
The channel, denoted bỹW , is depicted in Figure 3.

The transition probability function of̃W is given by

W̃ (y, s|b) = PY,S|B(y, s|b) =
1

L
Ws(y, b). (3)

Note that both outputs can be combined into a single output,
the LLR, which is a sufficient statistic for optimal decoding
over any binary-input channel. The LLR calculation for the
channelW̃ is given by LLR

W̃
(y, s) , LLRs(y), where

LLRs(·) is given in (1). Therefore the independent parallel
channel model transforms the original nonbinary channelW
into a set ofL independent parallel copies of the channelW̃ .
Using a binary code that was designed for the simple binary
channelW̃ , reliable communication for the original channel
W can be attained.

Let C(·) denote the Shannon capacity of a channel (with
equiprobable input). According to [2], the BICM capacity
(assuming an infinite-length ideal interleaver) is given bythe
capacity ofL independent copies of the channel̃W , which

equalsL ·C(W̃ ). Direct calculation gives

CBICM(W ) = LC
(
W̃
)
= L · I(B;Y, S) = L · I(B;Y |S)

= L · ESI(B;Y |S = s) = L · ESC(Ws) =

L∑

s=1

C(Ws).

(4)

It is known thatCBICM(W ) is generally smaller than the full
channel capacityC(W ), as opposed to other schemes, most
notably multilevel coding and multistage decoding (MLC-
MSD) [6], in which C(W ) can be achieved. However, for
many channels, with Gray mapping the gap is small and can
sometimes be tolerated. For example, for 8-PSK signaling
over the AWGN channel with SNR = 5dB,C(W ) = 1.86bit
whereCBICM(W ) = 1.84bit. For an elaborate discussion on
the mapping, as well as examples for channels where Gray
mapping is suboptimal, see [9] and references within.

III. T HE PARALLEL BICM SCHEME

In this section we propose an explicit BICM-type communi-
cation scheme which we callparallel BICM (PBICM), which
allows the usage of binary codes on nonbinary channels at
finite blocklength. The main features of the scheme include
the following: (1) Binary codewords are usedin parallel to
construct a codeword that enters the channel, (2) A new finite-
length interleaver, (3) A random binary signal (binary dither)
that is added to the binary codewords. With the proposed
scheme, we rigorously show how the original channelW
relates to the channel̃W , thus allowing exact analysis and
design of codes at finite block lengths.

A. Interleaver Design

We wish to design a finite length interleaver that will be
as short as possible, that will be as simple as possible, and
that will cause the binary codewords to go through a binary
memoryless channel. In order to achieve the last goal, each
binary codeword must be spread overn channel uses ofW ,
so the interleaver output length cannot be less thann channel
uses. The newly proposed interleaver has of output length of
exactlyn, which satisfies the above requirements.

Let ENC and DEC be an encoder-decoder pair for a
binary code. Letb1, ...,bL beL consecutive codewords from
the output ofENC, bunched together to form a matrixB:

B =




b1

...
bL


 =




b11 . . . b1n
... blk

...
bL1 . . . bLn


 . (5)

Let s be a vector of i.i.d. random states drawn fromSn =
{1..L}n. s shall be the interleaving signal. Each column inB
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shall be shifted cyclically by the corresponding elementsk, so
the interleaved signal̃B is defined as

B̃ =




b(1+s1)L1 . . . b(1+sn)Ln

... b(l+sk)Lk

...
b(L+s1)L1 . . . b(1+sn)Ln


 , (6)

where(ξ)L , (ξ moduloL)+1. Each column vector of inter-
leaved signalB̃ is mapped to a single channel symbolxk =
µ(b(1+sk)Lk, . . . , b(L+sk)Lk), and we callx = [x1, ..., xn] the
channel codeword.

At the decoder an LLR value is calculated for every bitb in
B̃ from y. The LLR values are denoted bỹZ. We assume that
s is known at the decoder (utilizing common randomness),
therefore the de-interleaving operation is simply sortingback
the columns ofZ̃ according tos by reversing the modulo
operation. The de-interleaver output is a vector of LLR values
z for each transmitted codewordb, according to (1). Each
codeword is decoded independently byDEC.

B. Binary Dither

Since the decoder decodes each binary codeword inde-
pendently, the communication scheme employing the above
interleaver can be viewed as as set of parallel encoder-
decoder pairs, which we denote byENC1, ..., ENCL and
DEC1, ..., DECL (see Figures 4 and 5). Note that we cannot
assume any independence between the effective channels
between each encoder-decoder pair.

Consider the first encoder-decoder pair,ENC1 andDEC1.
Since the input ofDEC1 depends on the codewords trans-
mitted byENC2,...,ENCL, the channel betweenENC1 and
DEC1 is not strictly memoryless. If, somehow, the decoders
DEC2,...,DECL were forced to send i.i.d. equiprobable bi-
nary codewords, then channel betweenENC1 and DEC1

would be exactly the channel̃W (which is a binary mem-
oryless channel) with the accurate LLR calculation (1).

In order to achieve the goal ofL binary memoryless
channels between each encoder-decoder pair simultaneously,
we add a binary dither – an i.i.d. equiprobable binary signal
– to each encoder-decoder pair as follows. Let the dither
signals dl = [dl1, ..., dln], l ∈ {1, ..., L} be L random
vectors, each of lengthn, that are drawn independently from

b1

bL

m1

mL

ENC1

ENCL

...
...

...

s

π µ xB̃

Fig. 4. Interleaving scheme viewed as parallel encoders

y LLR
calc.

Z̃

s

π−1

z1

zL

DEC1

DECL

...
...

...

m̂1

m̂L

Fig. 5. De-interleaving scheme viewed as parallel decoders

b1

bL

b′
1

b′
L

m1

mL

d1

dL

+

+ENC1

ENCL

...
...

...

s

π µ xB̃

Fig. 6. PBICM encoding scheme. ‘+’ denotes
modulo-2 addition (XOR).

y LLR
calc.

Z̃

s

π−1

×

×

z1

zL

z′1

z′L

δ1

δL

DEC1

DECL

...
...

...
m̂1

m̂L

Fig. 7. PBICM decoding scheme.δl , 1− 2 · dl, ‘×’ denotes
element-wise multiplication.

a memoryless equiprobable binary source. The output of each
encoderENCl, bl, goes through a component-wise XOR
operation with the dither vectordl. The output of the XOR
operation, denotedb′

l, is fed into the interleaverπ. The full
PBICM encoding scheme is shown in Fig. 6.

We let each decoderDECl know the value of the dither
used by its corresponding encoderENCl, dl (in practice the
dither signals are generated using a pseudo-random generator).
In order to compensate for the dither at the decoder, the LLR
values are modified by flipping their sign for each dither value
of 1 (and maintaining the sign where the dither is 0). Formally,
denote the LLR values at the de-interleaver output byz′l =
[z′l1 ... z′ln]. The LLR values at the decoders input shall be
denoted byzl = [zl1 ... zln] and given byzlj = z′lj(1 −
2dlj), j = 1, ..., n. The PBICM decoding scheme is shown
in Fig. 7.

C. Model Equivalence

Before we analyze the channel between each encoder-
decoder pair in PBICM, let us define a binary memoryless
channel that is related tõW , which will prove useful in the
analysis of PBICM.

Definition 2: Let W be a memoryless binary channel with
input B and output〈Y, S,D〉: S is drawn at random from
{1, ..., L}, D is drawn at random from{0, 1} (S andD are
independent, and both do not depend on the inputB). Y is
the output of the channelWS with input B ⊕ D (⊕ is the
XOR operation). Note that the channelW is the channel̃W
where the input is XORed with a binary RVD (see Fig. 8)
and that the LLR calculation for the channelW is given by
LLRW (y, s, d) = (−1)dLLR

W̃
(y, s) = (−1)dLLRs(y).

Theorem 1:In parallel BICM, the channel between every
encoder-decoder pair is exactly the binary memoryless channel
W , with its exact LLR output.

Proof: Consider the pairENC1 and DEC1. Let b1

be the codeword sent fromENC1. After adding the dither
d1, the dithered codewordb′

1 enters the interleaver. The
other codewordsb2, ...,bL are dithered usingd2, ...,dL. Since
the dither of these codewords is unknown atDEC1, the
dithered codewordsb′

2, ...,b
′
L are truly random i.i.d. signals.
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The interleaving signals interleaves the dithered codewords
according to (5). The interleaved signal enters the mapperµ
and the channelW , resulting in an outputy. Since the dithered
codewordsb′

2, ...,b
′
L are i.i.d., the equivalent channel fromb′

1

to 〈y, s〉 is exactly the channel̃W . The LLR calculation at the
PBICM receiver along with the interleaver producez′1 , which
is exactly the LLR calculation that fits the channel̃W .

Recalling that the channelW is nothing but the channel̃W
with its input XORed with a binary RV, and that the LLR of the
channel̃W can be easily modified by the dither to produce the
LLR of the channelW , we conclude that the channel between
b1 to z1 is exactly the channelW with LLR calculation.

Since by symmetry the above holds for any encoder-decoder
pair ENCl-DECl, the proof is concluded.

An important note should be made: Parallel BICM allows
the decomposition of the nonbinary channelW to L binary
channels of the typeW . TheseL channels arenot independent.
For example, ifW is an additive noise channel, and at some
point the noise instance is very strong, this will affect allthe
decoders and they will fail in decoding together. However,
since in the PBICM scheme the channels are used indepen-
dently, the operation of each decoder is not changed. The
outputs of these decoders will inevitably be dependent, andwe
take this into consideration when analyzing the performance
of coding using PBICM in the following.

D. Error Probability Analysis

We wish to analyze the performance of PBICM, and
specifically, we are interested in the overall codeword error
probability. LetC be a binary(n,R) code, used in the PBICM
scheme. To assure a fair comparison, we regard eachL
consecutive information messages(m1, ...,mL) as a single
messagem, and regard the scheme as a code of lengthn on
the channel input alphabetX . We define the following error
events: LetEl be the event of a codeword error inDECl,
and let E be the event of an error inany of the messages
{m1, ...,mL}, i.e. E =

⋃
l El. Denote the corresponding error

probabilities bypel andpe respectively.
Corollary 1: Let pe(W ) be the codeword error probability

of a binary codeC over the channelW . Then the overall error
probability pe of the codeC when used with PBICM can be
bounded by

pe(W ) ≤ pe ≤ L · pe(W ). (7)

B

S ∈{1, ..L}
SD ∈{0, 1}
D

YWs

W̃
W

Fig. 8. The binary channelW . The random stateS and the ditherD are
known at the receiver.

Proof: First note that

min{pe1 , ..., peL} ≤ pe ≤
∑

l

pel , (8)

where the left inequality follows by definition and the right
inequality follows from the union bound. Following Theorem1
we havepe1 = pe2 = ... = peL = pe(W ) and the proof is
concluded.

Note that due to similar arguments, the average bit error
rate (BER) with PBICM will be equal to the BER attained by
the codeC over the channelW .

In many cases the bit error rate (BER) is of interest.
Suppose that each of the messages(m1, ...,mL) represents
k information bits and the entire messagem representsL · k
information bits. LetEb

lk′ denote the error in thek′-th bit of the
information messageml. The average BER for the encoder-
decoder pairENCl-DECl is defined by

pbel ,
1

n′

n′∑

k′=1

Pr{Eb
lk′}. (9)

Similarly, define the overall average BER as

pbe ,
1

L · n′

L∑

l=1

n′∑

k′=1

Pr{Eb
lk′} =

1

L

L∑

l=1

pbel . (10)

Corollary 2: Let pbe(W ) be the average BER of a binary
codeC over the channelW . Then the average BERpbe of the
codeC used with PBICM is equal topbe(W ).

Proof: Follows directly from Theorem 1 and from the
definition of the average BER in (10).

IV. PARALLEL BICM: I NFORMATION THEORETICAL

ANALYSIS

In the previous section we defined the PBICM scheme and
analyzed its basic error probability properties. The equivalence
of the channel between each encoder-decoder pair that was
established in Theorem 1 enables a full information-theoretical
analysis of the scheme. We show that the highest achievable
rate by PBICM (the PBICM capacity) is equal to the BICM
capacity as in Equation (4), which should not be a surprise. At
the finite-length regime, we derive error exponent and chan-
nel dispersion results as information-theoretical measures for
optimal PBICM performance at finite blocklength. Note that
the definition of error exponent and dispersion are meaningless
when the BICM scheme relies on an infinitely long interleaver.

A. Capacity

Let the PBICM capacity ofW , CPBICM(W ), be the highest
achievable rate for reliable communication over the channel
W with PBICM and a given mappingµ.

Theorem 2:The PBICM capacity is given by

CPBICM(W ) = L ·C(W ) =

L∑

s=1

C(Ws) = CBICM(W ). (11)

Proof: First, by Theorem 1, the performance of a binary
code with PBICM and its performance on the binary channel
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are tightly coupled as in Equation (7). It therefore follows
that the PBICM capacity is equal toL times the capacity of
the channelC(W ). Straightforward calculation of the capacity
givesC(W ) = C(W̃ ) = 1

L

∑L
s=1 C(Ws), as required.

A note regarding the capacity proof: one might me tempted
to try and prove the capacity theorem for PBICM without
dither, since with random coding, the codeC is merely an
i.i.d. binary random vector. This approach fails because ofthe
following. In the decoding of each codeword, the correctness
of the modelW̃ relies on the fact that theother codewords
are i.i.d. signals. Since PBICM requires a single code for
all the L levels, such a condition can never be met. It is
possible to prove the achievability without dither when using
a different random code at each level, but such an approach
will not guarantee the existence of a single code, as required
by PBICM.

B. Error Exponent

The error exponent of a channelW is defined byE(R) ,
limn→∞ − 1

n log (pe(n)), wherepe(n) is the average codeword
error probability for the best code of lengthn. A lower
bound on E(R) for memoryless channels is therandom
coding error exponent [3], which is given byEr(R) =
maxρ∈[0,1]maxPX(·){E0(ρ, PX)− ρR}, where

E0(ρ),− log


∑

y∈Y

(
∑

x∈X

PX(x)W (y|x)1/(1+ρ)

)1+ρ

 .

(12)
Since we consider equiprobable inputs only we omit the
dependence ofE0(ρ) in PX , and omit the maximization w.r.t.
PX in the definition ofEr(·). Others known bounds on the
error exponent include theexpurgationerror exponent lower
bound, thesphere packingerror exponent (an upper bound)
and others [3]. We now extend the error exponent definition
to the PBICM scheme:

Definition 3: For a given channelW and a mappingµ, let
EPBICM(R) be defined as1

EPBICM(R) , lim
n→∞

− 1

n
log (pe(n)) , (13)

wherepe(n) is the average codeword error probability for the
best PBICM scheme with block length ofn.

Using Corollary 1, we can calculate the PBICM exponent
using the error exponent ofW :

Theorem 3:The PBICM error exponent of a channelW is
given by

EPBICM(R) = E(R/L), (14)

whereE(·) is the error exponent of the binary channelW .
Proof: It follows from (7) that

− 1

n
log(L · p(n)e (W )) ≤ − 1

n
log p(n)e ≤ − 1

n
log p(n)e (W ),

wherep(n)e is the PBICM error probability andp(n)e (W ) is the
error probability of the same (n,R) binary code overW . By

1In general, when defining error exponents, the definitions hold only when
the limit exist.

taking n → ∞ the factor ofL vanishes and we get that for
any series of codes,

lim
n→∞

− 1

n
log p(n)e = lim

n→∞
− 1

n
log p(n)e (W ). (15)

Since the rate for PBICM isL times the rate for coding on
W , the proof is concluded.

The channelW has a special structure, and is related to the
binary sub-channelsWi. We now calculate two basic bounds
for the error exponent ofW in terms of the sub-channelsWi.
By Theorem 3, the PBICM error exponent of the channelW
can be bounded accordingly.

Theorem 4:Let E(R) be the error exponent of the channel
W . It can be bounded as follows:

Random coding:

E(R) ≥ Er(R) = max
ρ∈[0,1]

{E0(ρ)− ρR}, (16)

where

E0(ρ) = − logE
[
2−E

(S)
0 (ρ)

]
, (17)

E
(s)
0 (ρ) is the E0 function for the channelWs, and the

expectation is w.r.t.S which is drawn uniformly from{1..L}.
Sphere packing:

E(R) ≤ Esp(R) = max
ρ>0

{E0(ρ)− ρR}, (18)

whereE0(ρ) is given in (17).
Proof: The bounds in the theorem are the original random

coding and sphere packing exponents [3]. The proof, therefore,
boils down to the calculation ofE0 of W . By writing the
definition of E0 for the channelW , and noting that the
transition probabilities are given by

W (y, s, d|b) = 1

2
W̃ (y, s|b⊕ d) =

1

2L
Ws(y|b⊕ d), (19)

E0 simplifies to the desired form of (17).
Several notes can be made. Since the random coding and

sphere packing exponents coincide at rates above the critical
rate ofW (denotedRW

cr ), the exact PBICM exponent is known
for rates above thePBICM critical rateRPBICM

cr , L ·RW
cr . For

lower rates we may use any of the other bounds on the error
exponent ofW (although they may not be able to be presented
as compactly as in (17)).

The functionE0 of the channel̃W is equal to the error
exponent of the channelW . In [6], the authors offered the
model ofW̃ for calculating the error exponent of BICM. It is
claimed thatE0 of the channel̃W is given by [6, Eq. (37)]:

E

[
E

(S)
0 (ρ)

]
=

1

L

L∑

s=1

E
(s)
0 (ρ). (20)

By Theorem 4, this is not the exact expression. In fact, it canbe
shown using the Jensen inequality thatE0(ρ) ≤ E

[
E

(S)
0 (ρ)

]
,

and therefore the resultingEr(R) expression overestimates the
true random coding of̃W .
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C. Channel Dispersion

An alternative information theoretical measure for quantify-
ing coding performance with finite block lengths is thechannel
dispersion. Suppose that a fixed codeword error probability
pe and a codeword lengthn are given. We can then seek
the maximal achievable rateR given pe and n. It appears
that for fixed pe and n, the gap to the channel capacity is
approximately proportional toQ−1(pe)/

√
n (whereQ(·) is

the complementary Gaussian cumulative distribution function).
The proportion constant (squared) is called the channel disper-
sion. Formally, define the (operational) channel dispersion as
follows [5]:

Definition 4: The dispersionV(W ) of a channelW with
capacityC is defined as

V(W ) = lim
pe→0

lim sup
n→∞

n ·
(
C −R(n, pe)

Q−1(pe)

)2

, (21)

whereR(n, pe) is the highest achievable rate for codeword
error probabilitype and codeword lengthn.

In 1962 , Strassen [4] used the Gaussian approximation to
derive the following result for DMCs:

R(n, pe) = C −
√
V/nQ−1(pe) +O

(
logn

n

)
, (22)

where C is the channel capacity, and the new quantityV
is the (information-theoretic) dispersion , which is givenby
V , VAR(i(X ;Y )), wherei(x; y) is the information density,
given by i(x; y) , log PXY (x,y)

PX(x)PY (y) , and the distribution of
X is the capacity-achieving distribution that minimizesV .
Strassen’s result proves that the dispersion of DMCs is equal
to VAR(i(X ;Y )). This result was recently tightened (and
extended to the power-constrained AWGN channel) in [5].
It is also known that the channel dispersion and the error
exponent are related as follows. For a channel with capacity
C and dispersionV , the error exponent can be approximated
by E(R) ∼= (C−R)2

2V ln 2 . See [5] for details on the early origins of
this approximation by Shannon. We now extend the dispersion
definition for PBICM.

Definition 5: The PBICM dispersionVPBICM(W ) of a
channelW and PBICM capacityCPBICM(W ) is defined as

VPBICM(W ) = lim
pe→0

lim sup
n→∞

n·
(
CPBICM(W )−R(n, pe)

Q−1(pe)

)2

,

whereR(n, pe) is the highest achievable rate for any PBICM
scheme with a givenn andpe.

Relying on the relationship between the PBICM scheme and
the binary channelW , we can show the following:

Theorem 5:Let n be a given block length and letpe
be a given codeword error probability. Define the highest
achievable rate attained using PBICM byRPBICM(n, pe), and
the gap to the PBICM capacity by∆R = CPBICM(W ) −
RPBICM(n, pe). Then,

∆R ≤

√
L2V(W )

n
Q−1

(pe
L

)
+O

(
1

n

)
, (23)

∆R ≥

√
L2V(W )

n
Q−1(pe) +O

(
logn

n

)
. (24)

As a result, the PBICM dispersion is given by
VPBICM(W ) = L2V(W ).

Proof: The achievability bound (23) follows from [5,
Theorem 45] and from Corollary 1. The factor of1/L in the
inverseQ function comes from the unavoidable use of the
union bound in (7). The converse (24) follows from [5, Theo-
rem 49] and Corollary 1. The PBICM dispersion follows from
(23) and (24), and from the fact thatlimε→0+

Q−1(ε)2

2 ln 1
ε

= 1.
As in the error exponent case, the PBICM dispersion of

a channel is related to the dispersion of the binary channel
W . We now calculate it explicitly from the dispersions of the
binary sub-channelsWi.

Theorem 6:The dispersion of the channelW is given by

V(W ) = V(W̃ ) = E[V(WS)] + VAR [C(WS)] =

=

[
1

L

L∑

s=1

V(Ws)

]
+ VAR(C(WS)), (25)

whereVAR(C(WS)) is the statistical variance of the capacity
of Ws, i.e.

VAR(C(WS)) , E[C2(WS)]− E
2[C(WS)]. (26)

Proof: Recall that

W (y, s, d|b) = 1

2
W̃ (y, s|b⊕ d) =

1

2L
Ws(y|b⊕ d). (27)

The dispersion of all memoryless channels is given by the
variance of the information density. ForB being the input
to the channel̃W we it can be shown that the information
densities are related as follows:

iB;Y,S(b; y, s) = iB;Y |S(b; y|s). (28)

Therefore we have

V(Ws) = VAR(iB;Y,S(B;Y |s)|S = s)

= E

[
i2B;Y |S(B;Y |s)|S = s

]
−C(Ws)

2,

V(W̃ ) = VAR(iB;Y |S(B;Y |S))
(a)
= E

[
VAR[iB;Y |S(B;Y |s)|S = s]

]

+ VAR
[
E[iB;Y |S(B;Y |S)|S = s]

]

= E[V(WS)] + VAR [C(WS)]

=

[
1

L

L∑

s=1

V(Ws)

]
+ VAR(C(WS)). (29)

(a) follows from the law of total variance. The dispersion of
W is calculated similarly, resulting in (26).
Note that since large dispersion means higher backoff from the
capacity (see (22)), the termVAR(C(WS)) can be thought
of as apenalty factorfor the dispersion, over the expected
dispersion over the channelsWs, E[V(WS)]. This factor
grows as the capacities of the sub-channelsWi are more
spread. It is interesting to note that the termE[V(WS)] appears
in the context of multilevel codes and parallel independent
decoding, a scheme which is related to parallel BICM (see
[10, Ch. 5]).
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V. NUMERICAL RESULTS

In this section we evaluate numerically the PBICM random
coding error exponent (see Theorems 3 and 4) in order to
compare it with the mismatched decoding exponent [7]. We
consider the AWGN and the Rayleigh fading channels.

A. Normalization: Latency vs. Complexity

When the latency of both schemes is fixed ton channel uses,
the the PBICM error exponent is generally inferior to that of
the mismatched decoding. This can also be seen by observing
that the PBICM random coding exponent has a slope of−1/L
(in its straight-line region), where the mismatched decoding
exponent has a slope of−1. However, it should be taken into
consideration that when the block length isn, the mismatched
decoder is working with a binary code of lengthn · L. The
complexity of the maximum-metric decoder is proportional to
the number of codewords2n·L·R [7], whereR is the rate of
the binary code. On the other hand, the number of codewords
in the PBICM scheme isL · 2n·R only. In order to assure a
fair comparisonfrom the complexity point of view, the PBICM
scheme shall use a block length that isL times the block length
of the mismatched decoding scheme. Comparing the error
probabilities of both schemes givesnLEPBICM

r = nEMismatched
r .

We therefore define the normalized PBICM error exponent as
L times the PBICM error exponent (the concept of normalized
error exponent was introduced by Arikan [11, Sec. VII] in
the context of multilevel codes). We conclude that when
the complexity is more important (and the latency is less
important), the normalized PBICM exponent is the quantity
of interest.

It could be claimed, of course, that practical codes used
today (such as low-density parity check (LDPC) codes) will
be used and they do not have exponential decoding complexity.
On the other hand, such codes do not guarantee an exponen-
tially decaying error probability.

B. Comparison with the Mismatched Decoding Exponent

In the following we show the comparison between the
PBICM error exponent and the mismatched decoding error
exponent [7]. We show the (unconstrained) random coding
error exponent of the channel, along with the mismatched error
exponent and the PBICM random coding error exponent (both
normalized and un-normalized).

Figure 9 compares the exponents of 16QAM signaling over
the Rayleigh fading channel at SNR = 5dB. Throughout the
entire range of rates between zero and the BICM capacity,
the normalized PBICM random coding exponent is higher
(better) than the mismatched decoding exponent. Both BICM
exponents are zero for rates above the BICM capacity, and the
unconstrained random coding exponent reaches zero at the full
channel capacity, as expected. A fact that might be somewhat
surprising at first glance is that the normalized PBICM expo-
nent is better than the unconstrained random coding exponent
for some rates. While this may seem contradictory, recall that
the normalized PBICM scheme essentially takesn ·L channel
uses so it cannot be considered a scheme that uses a block
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Fig. 9. Random coding exponents over the Rayleigh fading channel with
16-QAM signaling and SNR of 5dB
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Fig. 10. Random coding exponents over the Rayleigh fading channel with
64-QAM signaling and SNR of 20dB.

of n channel uses. The mismatched decoder never attains
higher values than the unconstrained exponent, a fact that
is known as the data processing inequality for exponents [7,
Proposition 3.2]. Fig. 10 shows a similar picture for the case
of 16QAM and SNR of 20dB (this behavior was observed over
the Rayleigh fading channel for all practical ranges of SNR
and 8PSK, 16QAM and 64QAM signaling). For the AWGN
channel it cannot be claimed that the normalized PBICM
exponent outperforms the mismatched exponent, and the other
way around is also not generally true. Examples for both cases
are shown in Figures 11(a) and 11(b).

VI. SUMMARY AND DISCUSSION

In this paper we have presentedparallel bit-interleaved
coded modulation(PBICM). The scheme is based on a finite-
length interleaver and on adding binary dither to the binary
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Fig. 11. Random coding exponents over the AWGN channel with 16QAM
signaling for SNR values of 0dB and 5dB.

codewords. The scheme is shown to be equivalent to a binary
memoryless channel, so it allows easy code design and exact
analysis. The scheme was analyzed from an information-
theoretical viewpoint, and the capacity, error exponent and the
dispersion of the PBICM scheme were calculated.

Throughout the paper, the channel is assumed to be mem-
oryless. This captures many interesting channels, including
the AWGN channel, and the memoryless fading channel with
(and without) state known at the receiver (ergodic fading).For
slow-fading channels, another interleaver (symbol interleaver)
is required in order to transform the slowly fading channel
into a fast-fading channel (cf. [2]).

Another approach for analyzing BICM at finite block length
was proposed in [7], where BICM is thought of as a mis-
matched decoder. Since this BICM setting uses finite length,
the random coding error exponent of the scheme can be
calculated. In the previous section we have compared the
error exponents of PBICM and of the mismatched decoding

approach. When the two schemes have the same latency
(same block length) the PBICM exponent is inferior to that
of the mismatched decoding approach. However, when the
complexity of the scheme is considered (or equivalently, when
codeword length of the underlying code is the same), PBICM
becomes comparable, and generally better over the Rayleigh
fading channel.

An important merit of the PBICM scheme is that it allows an
easy code design. In PBICM, one has to design a binary code
for a memoryless binary channel. When designing efficient
binary codes such as LDPC [12], a desired property of a
channel is that its output will be symmetric. It appears thatno
matter what channelW we have at hand, the resulting binary
channelW is always output-symmetric (when the output is
the LLR).

The PBICM scheme is composed of, among other things,
binary dither. Dither is used in some cases as a theoretical
tool for achievability proofs. In PBICM, it is an essential part
of the scheme itself, and even the random coding capacity
proof becomes impossible without it. The main role of the
dither is to validate the equivalence of the PBICM scheme to
a binary memoryless channel. In addition, the binary ditheris
the element that symmetrizes the binary channel, which makes
the code design easier. This symmetrization property was also
noticed by [13] where a similar dither is used with BICM (and
termed ’channel adapters’). The code design proposed in [13]
rely on the assumption of an ideal interleaver.

Because of its simplicity and easy code design, we conclude
that PBICM is an attractive practical communication scheme,
which also allows exact theoretical analysis.
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